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ABSTRACT

The present paper presents an analytical study of the

steady-state velocity field induced in a liquid by a rotating

cone. As a consequence of the experimental observations,

velocity functions which very accurately define the flow have

been developed. The functions are of such a nature that the

centerline of a vortex and the flow about the centerline are

accurately described. The boundary conditions at the surface

of the rotating cone and at the fixed boundaries are satisfied.

Also the continuity equation is satisfied.

Finally, the stress field in the fluid has been studied

in terms of the velocity functions. In particular, the rela-

tion between angular velocity of cone and the total torque on

the cone was determined by precise experiments. The relation

is linear and a discussion-of the implications of this fact

in terms of the nature of the constitutive equations for the

liquid is presented. The force of the evidence is that the

liquids studied are Newtonian and the viscosity coefficients

determined by experiment agree with those cited by various

authorities.
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i. INTRODUCTION

In 1953, there was introduced an experimental apparatus

which has become known as the Ferranti-cone-plate viscometer .

Determination of coefficients of viscosity of liquids tested

with this apparatus is based upon the assumption that a liquid

always flows in concentric circular paths about the axis of

rotation of the cone. in October 1962, in a technical paper
entitled, "A Rotational Fluid Flow Generator for Studies in

Rheology "2 , it was shown that actually a more complex flow

pattern exists for all speeds investigated. it was further

shown that the observed flow is stable at all velocities in

the range studied, even do-wn to zero velocity. Hence, in

particular it is not of the Taylor instability type which is

generated between two rotating coaxial cylinders.

Motivated by these discoveries, it was decided to study

the actual flow pattern and to make a comprehensive an-lysis

of the corresponding steady-state velocity field. An effective

method available for the study is based upon direct observation
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of the flow in the above mentioned generator. Flow visualiza-

tion techniques and torque measurements reveal a considerable

amount of information concerning the nature of the flow.

Using the knowledge so gained, functions representing the

velocity components were constructed.

II. THE VELOCITY FIELD

The structure of the velocity field was graphically shown

by visualization techniques, as in Figure 1. It is this pic-

ture which clearly demonstrates the vortical nature of the

flow in considerable detail. Starting with such pictures one

can develop expressions for the components of velocity, ana-

lytically defining the flow.

In a cross-section, the velocity trajectories are a

family of closed curves. Using cylindrical coordinates, a

conceivable representation of these trajectories for a =

constant plane is:

n 1 I n=n 1

k= a r am- r n = constant (!)

m0 n=O

In non-dimensionalized coordinates a particular form of the

series is:

k l 22 k

k = -(Z!-) z (-R) 3 + (Z-R) Zc  (1-R) - (2)

which is suggested by the equation of the boundary,
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(Z-R)Z(1-R) = 0 (3)

where the non-dimensionalized coordinates and velocities are:

R = r Z = z

r 0 hro

V r= = VU V

uR r ., u¢ , u Z =

0a0 ro 0 hrCo

The maximum radius of the cone is r 0 and the angular

velocity of the cone is 0 " The tangent of the angle be-

tween the surface of the cone and the horizontal surface of

the cylindrical container is h . In the future this angle

will be referred to as the cone angle and will be denoted by

the letter a . Also (Rc I Zc) are the coordinates of the

vortex center.

For these trajectories the slope of any tangent line is

the ratio of the velocity components at the point of tangency.

Also the velocity components should be such as to satisfy the

continuity equation. Hence, the velocity components uR and

uZ  defined in terms of k are:

uR = E 6k u _ E 8k (E)
R 6Z R MR

where E is a function of k , and k is a function of R

and Z , given by equation (2). Thus,
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uR = -- (1-R) 3 z 2  (Z-R) 1  [(X + 2)Z - ?2 R] (6)
R

and

u Z  (1-R) 3"Z2 (Z-R) 1-[h3Z - (\l+ N3 )R + NI] (7)
R

Furthermore, observation shows that at the vortex center, u

is not zero, but uR and uZ  are zero. Hence, from the ex-

pressions for uR and u Z

(? I + h2)Zc - 2Re= 0

and (8)

hB 3 - ( + h3 )Rc + = 0

Consequently, the following conditions are placed on ?I

'A2 ' ?3:

Rc - Zc

N 2  Zc

S  Zc  c (10)

S3 Rc

Furthermore, because uR and uZ are zero on the boundary

the V's must be chosen so that,

hI - 1 > 0 , 2 - 1 > 0 , 3 - 1 > 0 (ii)
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It follows that uR will be zero at every point in the flow

domain where:

z
z = - R (12)

Rc

and u Z  will be zero at every point where:

Z 1 Z - Rcz= R c (13)

R - 1 R -Ic C

Z

For values of Z > S R , uR is positive and for values of
c

Z

Z <,TR , uR is negative. Likewise, for values of
c

Z -l1 Z -R c

Z > [ c R - ] uZ  is positive and for values ofR c  1 Rc-I = "

Z - Zc - Rc
Z < [c R - , Uz is negative. These results

C C

agree with the observations using flow visualization techniques.

The third velocity component u¢ could conceivably be

represented as follows:

m=nI  n=n 1

Z(1-R) 1 n RM zn14u = -+ " (14)
1- Z L n

m=O n=

A particular simple form of this series was chosen to repre-

sent u. as follows:
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u Z(l R) + AZ(Z-R)(I-R)(R+BZ) (15)
1 - Z

where A and B are constants to be determined. Now uR

u0 , uZ have been determined in such a manner that the con-

tinuity equation and the boundary conditions are satisfied.

The constants ?I 1 12 1 ?3 $ A, B and the parameter E can

now be determined by experiment.

III. METHODS FOR THE DETERMINATION

OF THE V's, E, A, AND B

A. The Determination of the V's

The V's can be determined once the position of the vor-

tex center is known. The following is a description of the

experimental method used to obtain this information.

Small water particles were injected into the flow domain

with a hypodermic needle. Using two micrometer screws, the co-

ordinates of the particle with reference to the top and side of

the cylindrical container could be determined. Water particles

moving in a circular path about the axis of rotation of the

cone are at the vortex center. For castor oil U.S.P. the re-

sults are presented in Table I. The distance of the vortex

center from the vertical wall is , and the distance of the

vortex center from the top of the cylindrical container is TJ

The experimental arrangement for the cylindrical container and
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one of the cones is shown in Figure 2.

From the table it can be seen that as the cone angle de-

creases, the vortex center moves toward the cylindrical wall,

It is concluded that as a , the cone angle, approaches zero

degrees, Rc approaches unity. As a increases, the vortex

center moves toward the axis of rotation of the cone. Some

observations made with a 760 angle cone indicate that such

is the case also for cones whose angles are larger than 45° .

B. The Determination of E

The quantity E varies with the surface parameter k

and the angular velocity of the cone. Its determination was

made from considerations of what may be called types of cir-

culation of a particle of the liquid. Specifically, the cir-

culations considered are of two kinds; one around a cross-

sectional trajectory, the other around the axis of rotation

of the cone. This follows from the fact that a given particle

of liquid always moves on a particular toroidal surface. In

so doing the particle moves not only around the fixed circular

axis which coincides with the vortex center in the liquid but

also around the axis of rotation of the cone.

The time required for a particle to make one revolution

about the fixed circular axis is:

t ds ¢(16)
v
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where ds is a differential length on a particular trajectory

defined by k , and v is the magnitude of the vector sum of

the velocity components vr and v . Also, the above time

can be related to the average angular velocity, a)i , of the

particle as it rotates once about the fixed circular axis.

The symbol ai refers to a particular surface defined by the

parameter k The relation is:

2v ds (17)

Wai v

Non-dimensionalizing the integrand and solving for E one

finds the relation:

CUai [d [2 + h2 d2 1/2
1/2

27M 2 + 2 Uz

0 uR  _ + u z2E=- - (18)

where uR JP u Uz =Z
E ZE

It was found experimentally that the average angular

velocity of the particle about the cone axis, a., ' is re-

lated to the average angular velocity m i of the particle

about the fixed circular axis as follows:

'ai = y 0: (19)
a i s

where Rai is a parameter depending only upon k The max-

imum angular velocity of the cone for the velocity range
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studied is as . Also it was experimentally found that aai

is related to the angular velocity of the cone as follows:

ai = G 2o  (20)

where G is a parameter depending only upon k . Using equa-

tions (19) and (20) with equation (18) the parameter E is

given as follows:

Rai(k)G(k) 0 [d2 + h 2 d2 1/2
E R 2 (21)2r 2 + 2 Z2 ]1/2

The two parameters Rai and G can be determined experimen-

tally by measuring the time required for the particle to travel

once about a trajectory defined by k , and by counting the

number of times the particle moves about the cone axis while

moving once about the plane trajectory. The integral can be

evaluated by using the derived velocity functions.

C. The Determination of A and B

The constants A and B can be calculated using data

from two experimental measurements. The first measurement is

of the angular velocity of water particles placed at the vortex

center and the second measurement is the torque on the cone

surface.

Using a stop watch over long periods of observation, the

angular velocity of water particles placed at the vortex center

was determined. The results are shown in Table I. The ratio
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of the angular velocity of the particle at the vortex center

to the angular velocity of the cone is a . The values in
c

Table I are the averages of all the readings taken and A c

is the maximum percent of variation between the average and

an individual reading. The ratio a c is a constant over a

wide range of angular velocity. The range for which the re-

sults are listed in Table I was between 10 rpm and 80 rpm.

The difference in individual readings is probably caused by

the fact that the water particle cannot be placed at the exact

center of the vortex. It was found that by decreasing the

size of the water particle as the angular velocity of the

cone decreases, the agreement between individual readings was

improved.

As the cone angle approaches zero degrees, the angular

velocity at the vortex center approaches one-half the value

of the angular velocity of the cone. As the angle increases,

the ratio 2' decreases. For a = 45°05, the ratio is 0.306.
c

The torque on the rotating shaft was measured by a trans-

ducer constructed and developed for the R.P.I. Rotational Fluid

Flow Generator. The description of this transducer and the co-

related electrical circuit is completely described in the previ-

2
ously mentioned technical report2 . The torque was measured for

several cone angles over the range of angular velocity from

zero to 100 rpm. The liquids investigated were castor oil

U.S.P., S.A.E. lOW, S.A.E. 20-20W, and S.A.E. 30 Lubrite Motor

Oil manufactured by the Mobile Oil Company. Using the simplest
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means of thermal shielding and insulation, the experiments were

carried out at a temperature of 22.20 Centigrade. The results

of these experiments show that the torque is a linear function

of the angular velocity of the cone. Hence, the constitutive

equation for a Newtonian, incompressible liquid was considered

to be the constitutive equation characterizing the liquids for

which the developed velocity field is applicable. The equation

is written:

T = - p1 + 2pX (22)

where T and X are the stress tensor and the rate of deforma-

tion tensor respectively, I is a unit tensor, and p is de-

fined as the arithmetical mean of the normal stresses. The co-

efficient of viscosity is p

In cylindrical coordinates, the shear stress component

which produces a torque on the surface of the cone is as follows:

T = -[ (V .sin 3- -. sin ] (23)
6r r z

The total torque on the surface of the cone is then:

a

M = 27f r 2 [Tr] • sec a dr (24)
z=r tana

Putting the velocity functions into equation (24) the following

formula was derived.
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M/00 - co{asi aR5+ R
co ain 2 - 2(1-R) + log(l-R)- 5  (2 )

(25)
where:

= A(l+B) (26)

For the flow examined experimentally, the length of the

free surface was kept at 10% of the total length of the

largest radius of the cone. Hence in equation (25) the limit

a is taken to be 0.9. Then equation (25) becomes:

MAO - cos a sin a

2r Lro- 3 (.998 + .0306) (27)

Using the results of the torque experiments, the expression

on the left hand side of equation (27) was evaluated. The re-

sults are shown in Table II. Using the average value for each

column, 5 can be calculated for each angle using equation

(27). The results are given in Table III.

Using the values of 5 in Table III, the values for the

coordinates of the vortex center, and the values of the angular

velocity of particles placed at the vortex center, given in

Table I, the values of A and B can be determined as follows:

u.u= Z (l-Rc) AZcRc(lZ) +- (Z-Rc)(I-Rc)(Rc+BZC) (28)L IR c = R clZ) Rc

Z = Zc
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and,

A (29)
1 +B

Solving equations (28) and (29) simultaneously A and B are

given by the following equations:

a' RC(l-Zc) - ZO(l-Rc) - 5 ZC2 R (Zo-Ro)(1-Ro)(I-Zc)A = - Z J . 2

Z c R c(1-R c )(1-Zc) (Zc-R C)

(30)

il' Rc(1-Zc - Z(1-R) 5 Z R (Zc-Rc)(1-Rc)(1-ZcB . . . c .. ... . c R ccc
a' Rc(1-Z) - Zc(l-Rc) -. Zc Rc(ZoRc) (lRc)(Z

(31)

IV. ILLUSTRATION OF THE METHOD FOR DETERMINATION

OF THE VARIOUS PARAMETERS

Using the experimental data of Table I, and the equations

(9) and (10) for a = 350 , the ?0s are as follows:

X1 = \2 = 4 X3 = 2 (32)

The equation of the velocity trajectories is:

k (Z-R)4 z 4(-R)2 + 2.62 x 10- 5  (33)

In Figure 3, several curves have been plotted using fractional

parts of 2.62 X l0- 5 for k . A comparison can be made
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between the calculated trajectories shown in Figure 3, and

the actual trajectories shown in Figure 1.

Using the experimental data given in Figures 4, 5, 6, and

the curves drawn in Figure 3, the parameter E was determined.

For curve "a", E = 13.6% 0 , for curve "c"., E = 8 .6 o ,

and for curve "d", E = 1.25 0 *

Using the experimental data of Tables I, II, and III, for

a equal 35 it was found that:

= 5.00

; = .35

Rc= .8 and Zc .

Using equations (30) and (31) it was found that:

A = - 19.6 and B = * 1.25 •

Hence, the velocity components are:

_ R E (1-R )2zB(z-R)B(2ZR) (34)UR = -- (1.
R

u = 2_E (1,R)Z (Z.R)3((Z3R+2) (35)
R

V z(l-.) * 19.6Z(Z..R)(1-R)(R,1.25Z) (36)

1-Z
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A formula for finding the coefficient of viscosity of

liquids using a 350 angle cone was developed using the re-

sults of Table II. It is as follows:

= .02.56 -- eentipoise (37)
0

where M is in dyne-cm and a0 is in sec' 1 . The coef-

ficients of viscosity calculated from the formula are given

in Table IV. The value of the coefficient of viscosity for

castor oil U.S.P. compares well with that given in the

Smithsonian Tables 3 and the viscosities of the S.A.E, oils

4agree with the values given by Shaw

Also it was found that for a 350 angle cone the circu-

lation time about the fixed axis through the vortex center

decreased as the vortex center was approached. For a0 equal

to 40 rpm the circulation time for curve fai was 1.57

minutes, and for curve "d" the value was .39 minutes. An

estimate was made of the time required for a particle to

travel about a curve from R = .3 to R = .9 for a cone

whose angle was 40 . For a0 equal to 40 rpm the circu-

lation time was of the order of 10 2 minutes. Hence as the

angle of the cone decreases to zero it is concluded that the

circulation approaches zero.
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V. EQUATIONS OF MOTION

Applying the constitutive equation (22) to Newton's equa-

tions of motion for axisymmetric, steady-state flow the equa-

tions of motion which have the linear Stokesian hypothesis for

a constitutive equation are the Navier-Stokes equations. In

cylindrical coordinates, the non-dimensionalized equations for

the specific problem under consideration, neglecting body

forces are:

uR u¢2  + u -R 1 6 2U R 2 [ 2uR + 1 uR uRli
UR - _ -- + = h 11

6R R Z K R 6Z 6R2  R 6R R

(38)

6u0 u Ruo 6u h
-- R _= + Ruz + -  

2 6
6R R Z K 6R R 6R RZ

(39)

Uz U uz 1 6 l+ h 2[2Uz + ~Z + Uz}
R

6R 6z z R 6R 6Z

(4o)

where P is related to the arithmetical mean p of the normal

stresses by the relation

p(roz) = (41)

and K is defined as,
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K . 0  h (42)
V

The Reynolds' number Re is proportional to K and

given as follows;

Re = K ()
h

The Reynolds' number refers only to a cone of given angle and

given gap width between the cone and cylindrical wall at the

free surface. For a 350 angled cone, the corresponding

range of the Reynolds' number using castor oil is

.48 < Re 48 (44)

The theoretical velocity field closely approximates the

observed velocity trajectories in a ¢ = constant plane, and

satisfies the continuity equation and the boundary conditions.

Also, the derived velocity components indicate that the parti-

cles of the fluid spiral around the central curve of a vortex

as they move about the axis of the cone. Also, the theoretical

velocity components agree with the experimentally determined

values at the vort-x center. Using the velocity component in

the ¢ direction, the total torque calculated on the cone is

approximately the same as that calculated on the cylindrical

container. It is on the basis of the agreement of these re-

sults with the actual flow produced in the laboratory that the

17-



theoretically determined velocity field is considered to be

an approximate solution of the differential equations (38),

(39) and (40).

Furthermore, integrating equation (40) with respect to Z

and equation (38) with respect to R . two representations of

the nonwdimenBional pressure field are obtained.

- I{ UR 2[ 3 2UR 1 6U R uRIJ
rr = + h -u-+ - _2T 21 3 R R R

- K - - + uz  dR +F1 (Z) (45)6R R 6z

4 2uZ + 1 h2 [ 2u

+1 - + h Z2 6R R 6R 6

Kh 2 [UR----- + u Z  dZ +F(R) (46)
3R 3z

If the velocity components u¢ , uR Y u Z  are exact solu-

tions of the Navier-Stokes equations then l should, of

course, equal T2

The discrepancy that may exist between Pl and F2 in

the present investigation has not been examined. It is an ob-

ject of study for future research.
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Finally it is suggested that an infinite series expansion

of k and u¢ of the form:

k = Rm Zn (47)

17_ n4

and

00 00

u= Z(,R) + D.Rm Zn (48)
m=OnO

may provide an exact solution to the equations of motion.

VI. DISCUSSION AND CONCLUSION

Using observations of the actual flow patterns and measure-

ments of torque and angular velocity, it was possible in the

present study to determine satisfactorily the functions describ-

ing the velocity field induced in a liquid by a rotating cone.

The stress field and the constitutive equations were studied in

terms of the velocity functions. The relation between the angu-

lar velocity of the cone and the total torque was shown to be

linear. Therefore, it was concluded that the liquids used in

the investigation were Newtonian and the differential equations

of motion governing the flow are the classical NavierStokeq

equations. Because of the many agreements of the constructed

velocity functions with the actual flow for cones of any angle,
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they are considered to be reasonable approximations to those

which are a solution to the Navier-Stokes equations. As the

angle of the cone approaches zero as a limit, the circulation

about the vortex center was shown to approach zero. The torque

and angular velocity relation approaches that which has been

developed by rheologists for the determination of the coef-

ficient of viscosity for Newtonian liquids, when rotating the

liquids by cones whose angles are less than 40 . However, by

using the velocity functions developed in the present research,

the measurement of viscosity is now not limited to the use of

cones with small angles and small amounts of liquid but can be

carried out with cones of any angle rotating in any amount of

liquid.

It is finally concluded that the investigation provides

effective new knowledge of the flow generated by a rotating

cone .immersed in a liquid and furthermore, provides the rational

basis for the generalization of formulae now used in visco-

simetry for Newtonian liquids.
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